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Abstract
Our model of action selection and postcompletion error 
in two form filling tasks extends to skip errors in a story 
telling task. We also discuss how it explains 
perseverations in one of the aforementioned form filling 
tasks. Finally we discuss a predictive classifier 
application we built from the model’s data.  The 
classifier could allow an autonomous agent to know 
when it is a bad time to interrupt a human, when a 
human is about to err, and how to help.
Keywords: Cognitive Architecture; Action Selection;  Human 
Error; Process Model; Predictive Model

Introduction
We are probably not saddled with special processes that 
make us err. If neuroscience could find the locus of such a 
curse, neurosurgery could cure us of the reason for the 
expression “to err is human.” Instead it is more 
parsimonious for human error to arise naturally out of the 
same processes we use to select our correct actions. This is a 
story about how a process model of action selection we 
originally developed to explain postcompletion error in two 
form filling tasks also explains skip errors in a story telling 
task.  The action selection model presented in this paper was 
originally used to explain postcompletion error in two form 
filling tasks (Tamborello & Trafton, 2013a & b).  Other than 
some task-specific details it remains unchanged. It is part of 
a larger effort to establish a unified process-level action 
selection and error model. A unified framework is important 
because one cognitive system, i.e. the human mind, 
produces all error types as well as correct behaviors. Getting 
the explanation correct for one or more phenomena in one 
task then acts as a constraint on getting the explanation 
correct for other error types as well as correct action 
selection.  Furthermore, if we are to predict error in complex 
task environments multiple error types must fall naturally 
out of the theory.

The model works within the framework of the ACT-R 6 
cognitive architecture (Anderson et al., 2004). ACT-R is a 
hybrid symbolic and subsymbolic computational cognitive 
architecture that takes as inputs knowledge (both procedural 
and declarative about how to do the task of interest) and a 
simulated environment in which to run. It posits several 
modules, each of which perform some aspect of cognition 
(e.g., long-term declarative memory, vision).  Each module 
has a buffer into which it can place a symbolic 
representation that is made available to the other modules. 
ACT-R contains a variety of computational mechanisms and 

the ultimate output of the model is a time stamped series of 
behaviors including individual attention shifts,  speech 
output, button presses, and the like. It can operate 
stochastically and so models may be non-deterministic. One 
of the benefits of embodying a theory in a computational 
architecture, such as ACT-R, is that it allows researchers to 
develop and test concrete, quantitative hypotheses and it 
forces the theorist to make virtually all assumptions explicit. 
To the extent that the model is able to simulate human-like 
performance the model provides a sufficiency proof of the 
theory.

Our model also builds upon the Memory for Goals theory 
(Altmann & Trafton, 2002), which posits that we encode 
episodic traces of our goals as we complete tasks. Each goal 
is encapsulated in an episodic memory, which sparsely 
represents what was the current mental context at the time 
of its encoding. The strength of these memories decay over 
time such that it may be difficult to remember the correct 
point at which we resume a task after an interruption. 
Memory for Goals provides a process-level theory for why 
certain types of errors are made during a well-learned task  
as a consequence of retrospective, episodic memory 
(Altmann & Trafton,  2007; Ratwani & Trafton, 2010; 2011; 
Trafton, Altmann, & Ratwani, 2009).

 In this report we describe how our postcompletion error 
model selected its actions and also explains sequence errors 
(perseverations and skips) in a story telling task. Some task-
specific alterations were made (noted hence),  but the general 
principles underlying our model allow it to work in this new 
domain without modification to its fundamentals. One can 
think of the the model as providing a highly specified 
template one can use to model action selection and error in 
any routine procedural task. It is a domain-specific mini-
architecture built within the more general-purpose 
architecture of ACT-R.

General Principles of the Model
We learned the general principles enumerated below by 
using one model to explain one error type in two data sets, 
each having used a different experimental paradigm (Byrne 
& Bovair, 1997; Altmann, Trafton, & Ratwani, 2011).  Our 
claim is that it is by the dynamic interaction of these 
principles that people select their actions in routine 
procedural environments. Perseverations and skips 
(postcompletion error is really just a skip that happens to 
occur in certain conditions) fall naturally out of the action 
selection process. This is because sometimes activations of 
correct and incorrect action representations become 



comparable in strength and transient noise (a property of 
ACT-R) in that moment increases the wrong action’s 
activation beyond the correct action’s activation.

Spreading Activation
During normal operation the model selects the next step it 
will perform by retrieving a step from long-term memory. 
That retrieval process is driven by activation spreading from 
a task context representation it holds within its working 
memory. Each step representation is associated with all 
subsequent steps’ representations  by dividing the maximum 
allowable association (an ACT-R parameter) by the 
prospective distance from the current context to the 
subsequent step. E.G.,  the association from the current 
context to the next step is equal to the maximum 
association, from current to next +1 is 1/2 the maximum 
association (since the prospective distance is 2), etc. This is 
meant to implement a kind of step co-occurrence association 
proportional to how closely two steps occur with each other.

Strengthening
As in Memory for Goals, as the model performs each action 
it encodes an episodic memory of its current task context. 
That episodic memory’s activation is strengthened at 
creation so that it is significantly higher than other, previous 
episodic memories which have already decayed to lower 
levels of activation. As in ACT-R’s account of declarative 
long-term memory, the memory matching the retrieval 
request (e.g.,  for an episode) and with the highest activation 
at request time is the memory retrieved. Furthermore, 
retrieval of a memory strengthens its activation.

Functional Decay
As in ACT-R and Memory for Goals, the activation of a 
memory decays over time if it is not strengthened again by 
retrieval. Besides its implication in forgetfulness, decay 
serves a function (Altmann, 2002). When old memories 
decay, they allow new ones to start with activations which 
make them relatively more likely to be retrieved than the old 
ones. This prevents positive feedback loops when trying to 
remember different instances of the same kinds of 
information, such as episodic encodings.

Interruption and Resumption
The context we focus on is resuming after being interrupted. 
With the rapid rise of communication technologies that keep 
people accessible at all times, issues of interruptions and 
multitasking have become mainstream concerns. For 
example, Time magazine (Wallis,  2006) and the New York 
Times (Thompson, 2005) both reported stories about 
interruptions and multitasking and how they affect 
performance.  The information technology research firm 
Basex issued a report on the economic impact of 
interruptions, which they estimated to be around $588 
billion a year (Spira,  2005). Given the prevalence of 
interruptions, building systems that can help remind an 
individual what they were doing or where they were in a 
task can have a large impact on individual and group 
productivity.

Being interrupted also greatly increases the number of 
errors (Trafton, Altmann, & Ratwani, 2011).  People will 
frequently repeat a step that has already been performed or 
skip a step that needs to be performed after an interruption. 
Sometimes these errors are irritating (e.g., destroying a meal 
by leaving out a crucial ingredient), but sometimes they can 
have disastrous consequences (e.g., taking medicine twice 
or not configuring the flaps for airplane takeoff). The 
research de- scribed here is applicable to these domains, but 
this report will focus on a common, everyday task: being 
interrupted while telling someone a story or giving 
instructions. This information-passing task is an excellent 
domain for studying the interruption/resumption process for 
several reasons. First, because it is so common to get 
interrupted while talking to a friend, it is easy to collect 
data. Second, providing ordered information to another 
person is a general class of problems that include recipes, 
checklists, story telling, direction giving, etc.

For example, in the middle of giving you instructions on 
how to operate a new device, your friend needs to take an 
important phone call for a few minutes. When she comes 
back to tell you the rest of the instructions, what does she 
do? If she cannot remember exactly where she left off, you 
may remind her or she may resume where she thought she 
left off (which may or may not be correct). If your friend 
was telling you a story, she may simply start somewhere 
close to where she left off. For the remainder of the paper, 
we will focus on building a process model of exactly what 
the interlocutor is doing as she attempts to resume the 
conversation, then we will relate elements of this model to 
our other attempts to build a unified process model of 
human routine procedural action selection and error.

The Story Telling Task
The important point of Trafton, Jacobs, and Harrison’s  
experiment for this study’s purposes was what it 
demonstrated about how people resume a task after being 
interrupted. Participants read three total pages of a soap-
opera-like story, then retold the story to a confederate. After 
retelling approximately two-thirds of the story, participants 
in the interruption condition were interrupted by the 
experimenter at a predetermined location. The control 
condition served to verify that the location of the 
interruption was not an especially difficult part of the story.

Resumption lag was coded as the time from the end of the 
interruption (or the intended point of interruption in the 
control conditions) until the participants began to fluently 
resume the story. To code the location of the resumption, 
Trafton, Jacobs and Harrison coded the gist of the story 
around the interruption location, and marked it as either 
“repeat” (e.g., a gist utterance that was a repeat of what had 
already been said),  “correct” (e.g., the next gist to occur in 
the story), or “skip” (e.g., an utterance that skipped the 
correct resumption gist). Experiment results will be 
presented in conjunction with model results.



Model Operation

Normal Task Execution
The model began each gist-telling cycle by retrieving from 
declarative memory a representation of one of the story’s 
gists. This retrieval process was driven primarily by 
associative priming (empirically fit to a maximum of 1) 
from the model’s active buffer contents. Then it updated its 
active buffer contents by copying the contents from its 
retrieved memory. Then the model spoke the contents of the 
gist. Next the model encoded an episodic memory with a 
reference to its active buffer contents, i.e.,  the gist it just 
spoke. Episodic encoding complete, the model repeated the 
cycle, beginning with the retrieval phase. In contrast to the 
Phaser and Financial Mangement tasks we modeled 
previously,  we assume that the story telling task has a flat, 
rather than hierarchical goal structure, and the model’s 
declarative memory encoding of the task reflects this.

Interruption
When the interruption began the model finished encoding its 
episodic representation as per normal operation. Then it 
cleared its active buffer contents and simply waited for 230 
seconds, the average interruption duration (Trafton, Jacobs, 
& Harrison, 2012). The episodic memory’s activation 
decayed during this interval using ACT-R’s standard decay 
mechanism and default decay rate.

Resumption
When the interruption ended the model first tried to retrieve 
the episodic memory. If the episode’s activation fell below a 
retrieval threshold (a feature of the ACT-R architecture, 
empirically fit to -2.375 for this model) it became 
unavailable to memory, and the model simulated asking for 
help. When the model did successfully retrieve the episode 
it then chose one of two competing resumption strategies it 
could employ: resume with the last gist told resume with the 
next gist.

We did this partly because we found that the model’s 
associative action selection mechanism—a constraint 
provided by the model’s performance of the form filling 
tasks described above—would not allow for sufficiently 
high levels of skips and repeats. In the form filling tasks we 
previously modeled repeats and skips occurred at rates well 
below 10%. Also we assume resumption place is subject to 
a sort of social mnemonic strategy people typically employ 
to remind the listener of a narrative’s context. In fact, 
empirical testing led us to bias the model slightly in favor of 
this strategy. ACT-R’s utility parameter for this strategy was 
0.175 units higher than the resume-with-next strategy’s 
while the standard deviation of the utility transient noise 
function was .1. This contrasts with Trafton et al.’s model 
which only tried to resume-with-next.

Here as in normal task execution the model relied upon 
priming by spreading activation to drive retrieval of a story 
gist. However, at resumption the model does not reconstruct 
its entire active buffer contents all at once, a feature hinted 
at by Trafton et al’s findings regarding the time course of 
resumption from interruptions (Altmann & Trafton, 2007). 

This means that in absolute terms less activation was 
propagated to the gist retrieval process at the transition from 
resumption to the normal execution cycle. This lower ratio 
of associative signal to transient retrieval noise (0.25, the 
same value for this ACT-R parameter as in Trafton et al.’ 
model) made skips more likely than during normal story 
telling because the difference in propagated activation 
between the current +1 gist’s memory (the correct gist) and 
the current +2 gist’s (the skip gist) memory was less relative 
to normal execution conditions. However, transient noise 
was,  on average, the same. Therefore transient noise had a 
greater influence during resumption, and that made skips 
more likely than during normal execution.  Sometimes when 
the model selected the “resume last gist” strategy it would 
skip, ultimately resulting in a “correct” resumption or even a 
skip. If it had selected the “resume next gist” strategy it was 
even more likely to ultimately skip.

This model is very different from Trafton, Jacobs, and 
Harrison’s in when it encodes its episodic memories and 
how its process leads to skips. That model actually encodes 
its episodes after retrieval from declarative memory of the 
next gist to tell but before it has told the gist.  An interruption 
may (or may not) fall between this episodic encoding and 
when a person has the chance to carry out an action. 
Therefore the model claims that in these cases people have a 
false memory of having carried out an action. This leads to 
the somewhat odd prediction that if an interruption could 
somehow be reliably timed to occur during action 
preparation—between episodic encoding and action 
performance—people will mostly perform skip errors at 
resumption rather than the correct action. When the 
interruption falls before the episodic encoding their model 
predicts that people will never skip at resumption. 

The current model predicts skip rates to remain 
unchanged in such scenarios because they fall naturally out 
of the action selection mechanism. Preliminary results from 
another task in which subjects skip at a very small rate (1%) 
even when not interrupted match the model’s rate for such 
trials. The increased skip rate at resumption comes from the 
juxtaposition of the action selection mechanism with this 
reduced active buffer content condition that occurs at 
resumption, a feature supported by Altmann and Trafton’s 
(2007) findings.

Furthermore, Trafton, Jacobs, and Harrison’s model, upon 
interruption, immediately stopped and switched tasks, 
predicting no switch lag for the interrupting task. The 
current model has so far been applied to tasks that interrupt 
immediately upon completion of an action. In this case, the 
model is just beginning its episodic encoding as the 
interruption starts. The model predicts switch lag for the 
interruption task is a consequence of this “finish up” activity 
left over from the previous action. 

Model Fit
To reproduce the empirical data, we ran 2000 simulated 
trials with a (virtual) listener available. For modeling 
purposes we focus on time to continue after interruption and 
where resumption occurred. Participants asked for help or 
acted like they wanted some help 77% of the time. When 
the model attempted to retrieve an episodic code after the 



interruption, it failed and asked for help 79% of the time. 
When the model failed to resume on its own it was because 
transient noise made the episodic memory less active than 
the retrieval threshold. The threshold functioned as a cut-off 
to abandon a retrieval when the amount of effort became 
excessive without leading to a successful retrieval. Trafton 
et al. did not match their model to control resumption 
latencies nor to where participants resumed. This model 
does match both in addition to the help and no help response 
latencies and help frequency.

Discussion
The novel contribution of our model stems from its 
generalizability.  It went unchanged from postcompletion 
error in two form-filling tasks, each in different 
experimental paradigms, to sequence errors in story telling. 
The two form-filling tasks encouraged participant use of a 
hierarchical goal structure. The story telling task by contrast 
arguably let to flat goal structure.  Yet despite the changes to 
task environment and type of error under examination,  the 
general principles of the model—action selection by 
associative spreading activation based on step co-
occurrence, strengthening, and functional decay—remained 
unchanged.

Generalization to Other Paradigms
Our model’s account of sequence errors holds for computer 
tasks with hierarchical goal structures, as was used 
previously to study PCE. For example, Altmann, Trafton 
and Ratwani (2011) employed a type of form-filling task 
called the Financial Management Task. In this task 
participants filled out a form to buy or sell financial 
securities based on orders received. The task involved 
entering information from the orders into a series of 
interface elements such as pull-down menus, check boxes, 

and radio buttons. Elements were arranged into clusters of 
two to four elements all relating to one aspect of the order. 
There were ten such clusters in the interface and the task 
required participants to enter information into the clusters 
following a specific order. 

Participants were interrupted occasionally while they 
performed this task. When they resumed the interface 
provided no cues to aid resumption at the correct next 
cluster. Participants sometimes perseverated the last step 
they had performed or skipped the next step they were 
supposed to perform.
Perseveration Although the most recently-created episode, 
the one created for the action just performed, had the highest 
base level activation, at this point the previous episode, 
although decayed, was still more active than the background 
activation level. Transient noise occasionally caused 
previous episodic memories (usually the next most-recent) 
to be more active at that moment. Perseveration errors 
occurred here, when the model would retrieve an episode 
from one or two steps ago because of this combination of 
transient noise and the relative recency of the episode’s 
creation did not allow decay quite enough time to reduce its 
activation far. 

Unlike the story telling task’s interruption, which 
involved declarative memory encoding of additional story, 
the financial management task’s interruption task was to 
solve simple arithmetic problems for 15 seconds. We 
assume that some declarative rehearsal is possible during 
this time, perhaps interleaved with arithmetic operations as 
in Salvucci and Taatgen’s theory of cognitive threading 
(Salvucci and Taatgen, 2008).  A rehearsal cycle early during 
the interruption could retrieve one of these slightly older 
episodes as described above, strengthening that memory’s 
activation. Subsequent rehearsal cycles tended to strengthen 
whatever episode the model had retrieved at the onset of the 
interruption. At resumption the model would then load an 

Figure 1. Resumption latencies of people (bars) and model 
fit (circles) in Trafton et al’s story telling task. Error bars 
represent the 95% confidence interval.

Figure 2. Where participants (bars) and the model (circles) 
resumed.

skipping one or more story gist statements, omnibus
!2ð2;N ¼ 26Þ ¼ 19, p G 0:05; Holm adjusted ps G 0:05.
This pattern of results is consistent with the MFG account
that people will attempt to remember the last episodic
code they talked about and resume from there.

C. Discussion
In summary, people had no problem retelling a story

they had just read when there was no interruption. When
there was an interruption, however, people took longer to
resume than when there was not an interruption, though it
did not matter if the person was telling the story to a
physically present listener or simply to a video camera. If

the story was being retold to a physically present person,
the storyteller did want help from the listener more than
75% of the time. Interestingly, when people needed help,
they seemed to have a much harder time remembering
where they should resume as shown by the fact that it took
them more than three times as long to be able to continue
the storytelling as people who did not need help. When
people did resume, they typically repeated part of the story
they had already described.

Consistent with a transactive memory approach, people
relied on their partner when there was a partner available.
The speaker evidently assumed that the listener would be
able to help. This strategy was unsuccessful because the
confederate was instructed not to help the participant, but
the result certainly shows the willingness of the storyteller
to use a different memory source. When there was no one
to rely on (e.g., when they were telling the story to a video
camera), the storyteller needed help much less often. This
result suggests that when there is no one to help them
remember the last thing they said, people will use their
own memory processes rather than rely on someone else’s.

These results are also broadly consistent with an MFG
approach. Generally, people create an episodic trace as
they retell a story, and after an interruption they attempt
to remember where they were by retrieving this episodic
trace. The MFG model’s prediction that when people
resume, they will usually repeat the last thing they said was
confirmed in this data set. To capture the details of this
resumption process, an MFG model was created.

III . MODEL DESCRIPTION

We used the MFG framework described earlier to develop
a cognitive simulation of the storytelling task.

The model has a moderately lean representation of the
processing that occurs during the storytelling task. Human
participants must iteratively recall the gist of the next story
element from memory and then elaborate upon that
element with any relevant details. This process is repeated
until the story is complete or the individual is interrupted.
The elaboration process is primarily one of natural lan-
guage generation and not the focus of this work. Instead
we focus on the process of creating, storing, and recalling
each gist element with a focus on resumption after an
interruption.

MFG postulates that at each discrete step in the exe-
cution of a task, an episodic control code is created
[Fig. 2(b)]. This episodic tag effectively marks the position
in the task by virtue of its existence in declarative memory.
The episodic tags effectively create an associatively linked
list of markers to completed steps in a task. If an inter-
ruption occurs, the episodic tag can be used to return to
that point in the task. At resumption time [Fig. 2(c)], the
model attempts to retrieve the most active episodic tag for
that particular gist. If successful, it will use that tag and the
associated gist element to retrieve the next to-be-reportedFig. 4. Where participants resumed.

Fig. 3. The amount of time it took people to resume (bars) and ACT-R/E

model fits (circles). Error bars are 95% confidence intervals.

Trafton et al. : Building and Verifying a Predictive Model of Interruption Resumption

Vol. 100, No. 3, March 2012 | Proceedings of the IEEE 653

skipping one or more story gist statements, omnibus
!2ð2;N ¼ 26Þ ¼ 19, p G 0:05; Holm adjusted ps G 0:05.
This pattern of results is consistent with the MFG account
that people will attempt to remember the last episodic
code they talked about and resume from there.

C. Discussion
In summary, people had no problem retelling a story

they had just read when there was no interruption. When
there was an interruption, however, people took longer to
resume than when there was not an interruption, though it
did not matter if the person was telling the story to a
physically present listener or simply to a video camera. If

the story was being retold to a physically present person,
the storyteller did want help from the listener more than
75% of the time. Interestingly, when people needed help,
they seemed to have a much harder time remembering
where they should resume as shown by the fact that it took
them more than three times as long to be able to continue
the storytelling as people who did not need help. When
people did resume, they typically repeated part of the story
they had already described.

Consistent with a transactive memory approach, people
relied on their partner when there was a partner available.
The speaker evidently assumed that the listener would be
able to help. This strategy was unsuccessful because the
confederate was instructed not to help the participant, but
the result certainly shows the willingness of the storyteller
to use a different memory source. When there was no one
to rely on (e.g., when they were telling the story to a video
camera), the storyteller needed help much less often. This
result suggests that when there is no one to help them
remember the last thing they said, people will use their
own memory processes rather than rely on someone else’s.

These results are also broadly consistent with an MFG
approach. Generally, people create an episodic trace as
they retell a story, and after an interruption they attempt
to remember where they were by retrieving this episodic
trace. The MFG model’s prediction that when people
resume, they will usually repeat the last thing they said was
confirmed in this data set. To capture the details of this
resumption process, an MFG model was created.

III . MODEL DESCRIPTION

We used the MFG framework described earlier to develop
a cognitive simulation of the storytelling task.

The model has a moderately lean representation of the
processing that occurs during the storytelling task. Human
participants must iteratively recall the gist of the next story
element from memory and then elaborate upon that
element with any relevant details. This process is repeated
until the story is complete or the individual is interrupted.
The elaboration process is primarily one of natural lan-
guage generation and not the focus of this work. Instead
we focus on the process of creating, storing, and recalling
each gist element with a focus on resumption after an
interruption.

MFG postulates that at each discrete step in the exe-
cution of a task, an episodic control code is created
[Fig. 2(b)]. This episodic tag effectively marks the position
in the task by virtue of its existence in declarative memory.
The episodic tags effectively create an associatively linked
list of markers to completed steps in a task. If an inter-
ruption occurs, the episodic tag can be used to return to
that point in the task. At resumption time [Fig. 2(c)], the
model attempts to retrieve the most active episodic tag for
that particular gist. If successful, it will use that tag and the
associated gist element to retrieve the next to-be-reportedFig. 4. Where participants resumed.

Fig. 3. The amount of time it took people to resume (bars) and ACT-R/E

model fits (circles). Error bars are 95% confidence intervals.

Trafton et al. : Building and Verifying a Predictive Model of Interruption Resumption

Vol. 100, No. 3, March 2012 | Proceedings of the IEEE 653



older, rather than the current, context into working memory 
and perseverate an older step.
Skips The model would perform skips in the financial 
management task for exactly the same reasons as in the 
story telling task. Associative priming from active buffer 
contents “bleeds over” from the intended target of 
declarative retrieval, the correct next step, to the step after 
that. This effect is magnified under conditions of degraded 
active buffer contents such as occurs during post-
interruption resumption as in the financial management task 
or in high memory load as in Byrne and Bovair’s Phaser 
task.

Potential Issues and Future Work
Although the story telling model presented here did not 
actually perform the interruption task, we believe the 
pertinent aspect of the interruption was simply that people 
did not engage in the primary task for some portion of time 
as a well-established and general mechanism, decay, 
explained this aspect of interruption and resumption 
performance.  Future iterations of the model incorporate 
developments such as Salvucci and Taatgen’s Threaded 
Cognition model to address issues such as what happens 
when interrupting tasks are complex and demanding, 
particularly of declarative memory.

We hope to apply the general principles learned from this 
model’s development to difficult human-computer 
interaction problems. For example, our process model, for 
each potentially-retrieved memory for each declarative 
memory retrieval operation,  produces a retrieval probability 
distribution. We can use this theoretically-derived data to 
build an action model for application in an autonomous 
teammate for a human. During task execution the robot 
builds a model of the human’s cognitive state based on 
observed actions and known procedures.  When the set of 
retrieval probability distributions indicates that the human’s 
memory encoding the correct next task step is not clearly 
the most likely to be retrieved by the human then the robot 
intercedes to remind its human teammate of the correct task 
context. Human-robot interaction benefits because the robot 
uses the process model to “know” its human teammate like 
a human teammate would. This gives the robot the 
capability to know when help is needed, how to help, and 
how to otherwise remain unobtrusive. In other words, the 
robot would know when it would be a bad time to interrupt 
a person.

Example Application: An Autonomous Agent 
Sensitive to Interruption Costs

A human and a robotic teammate set out on a task. Both 
know the task. The robot observes its human teammate as 
they perform the task. The robot has a cognitive model of 
the task running and follows along, updating the model’s 
state as the team performs the task. As in the model 
presented earlier in this paper, each step will involve a 
declarative retrieval of the relevant step memory and that 
means the robot’s model contains the data necessary to 
predict the human’s performance. We took that data and 

developed a classifier to predict whether or not a skip was 
imminent. 

The variables that went into the logistic regression were 
the activations of the correct and next two gist memories as 
well as the amount of activation spread by the active buffer 
contents. As expected, the activation of the correct next gist 
memory and activation spreading from active buffer 
contents were highly negatively predictive of skip outcome 
while activations of the next two memories were highly 
positively predictive of skip outcome.

We then evaluated classifications of the logistic model 
using receiver-operating characteristic analysis.  We 
determined the optimal decision criteria to be a skip 
probability of 33.5% which resulted in a true positive rate of 
79.7% with a false positive rate of 0.9%, a d’ of 3.17, and 
area under the ROC curve was 0.986. The area under the 
curve represents the probability that the logistic regression 
model will rank a randomly chosen positive instance (i.e. an 
error) higher than a randomly chosen negative instance (i.e. 
non-error) (Fawcett, 2006; Macmillan & Creelman, 2005). 
This is a quite high degree of discriminability and it means 
that when the decision model predicts a probability of skip 
of 33.5% or greater, the robot would successfully intervene 
in 79.7% of cases of when the human would have 
committed a skip error while only wrongly interrupting the 
human 0.9% of the time.

Conclusions
We started this project with our extant model of 
postcompletion error in two experimental paradigms, the 
Byrne and Bovair phaser task and the financial management 
task. This model contained a theory about how people select 
their actions when engaged in a routine procedural task 
because, we hypothesized, the same mechanisms underlying 
correct behavior must also cause errors. We tested the 
generalizability of our account by applying it to a new task 
domain and new error type, the story telling task and skip 
errors, respectively. The model’s process worked very well 
for the story telling task. Furthermore, its mechanisms 
rooted in Memory for Goals (Altmann & Trafton, 2002) also 
provides an explanation for another type of error, 
perseveration.

We then applied data generated by the model to a binary 
classification problem: for a given point within a task, is a 
human likely to commit a skip error? We demonstrated that 
we can correctly predict the occurrence of skip errors in the 
model data with high accuracy. Furthermore, because our 
cognitive model performs so well across a variety of routine 
procedural tasks we strongly suspect that our classifier 
should perform well across that domain as well.

Future work may validate the classifier’s performance for 
this story telling task. However the generalizability of the 
cognitive model upon which the classifier is based is what 
gives us hope for it one day being truly useful in the more 
general domain of routine procedural tasks. This includes 
many tasks in which one would want to use a robot—tasks 
that are dangerous, dirty,  or dull—and especially tasks 
which demand human judgment but are improved with 
automated systems, such as transportation, chemical 
processing, and energy production, to name a few.
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